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ABSTRACT 

Electricity markets in the United States are evolving. Accurate wind power forecasts are 
beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast 
makes it possible for grid operators to schedule the economically efficient generation to meet the 
demand of electrical customers. In the evolving markets some form of auction is held for various 
forward markets, such as hour ahead or day ahead. In California, the Independent System 
Operator (ISO) filed a tariff for intermittent generators that uses independently developed wind 
power forecasts to help with resource selection in the hour-ahead market. The Federal Energy 
Regulatory Commission (FERC) has recommended inclusion of this tariff in its Standard Market 
Design. This paper develops several statistical forecasting models that can be useful in hour-
ahead markets that have a similar tariff. Although longer-term forecasting relies on numerical 
weather models, the statistical models used here focus on the short-term forecasts that can be 
useful in the hour-ahead markets. The purpose of the paper is not to develop forecasting models 
that can compete with commercially available models. Instead, we investigate the extent to which 
time-series analysis can improve on simplistic persistence forecasts. This project applied a class 
of models known as autoregressive moving average (ARMA) models to both wind speed and 
wind power output. The ARMA approach was selected because it is a powerful, well-known 
time-series technique and has been used by the California Independent System Operator in some 
of its forecasting work. Results are presented for operating wind farms in Iowa and Minnesota, 
and indicate that a significant improvement over persistence models is sometimes possible. 

INTRODUCTION 

In some electricity markets wind is becoming a significant source of energy. As the use of wind 
power plants continues to grow, the impact of wind on various aspects of power system operation 
receives greater scrutiny. Because wind is an intermittent power source, these operational impacts 
are unlike those of other power plants. This intermittent characteristic of wind power generation 
means that efficient power system operation will depend in part on the ability to forecast 
available wind power. 

A wind farm operator would want to perform some type of cost-benefit analysis before 
embarking on, or participating in, a forecasting project. Central to this cost-benefit study would 
be any relevant market constraints or other considerations, such as the monthly netting of 
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imbalances that is part of the California ISO’s wind tariff (this applies only to wind facilities that 
participate in the ISO’s program and pay a forecasting fee). 

This paper examines the use of a standard class of statistical time-series models to predict wind 
power output up to six hours in advance. The purpose is not to develop models to compete with 
commercial forecasting models, such as those described in [1] or [2]. Rather, our goal to 
investigate the feasibility of relatively inexpensive statistical forecasting models that do not 
require any data beyond historical wind power generation data. This may limit the ability and the 
usefulness of this type of forecasting model, but for small wind farms that are unable to 
participate in formal forecasting projects, it might be desirable to use a statistical model that can 
be developed and used at lower cost. 

For this project we used data collected from operating wind power plants in Iowa and Minnesota. 
We found some differences in model performance at the two sites, and we would expect that sites 
in different climatic regions would exhibit even more variations. The data used for this project 
have been described in[3]. 

STATISTICAL MODELING FRAMEWORK 

Although many time-series methods could be applied to this problem, a general class of models 
known as autoregressive integrated moving average (ARIMA) models is applied in this paper. 
Similar models have been applied by [4], [5], and [6]. ARIMA models have up to three 
components: autoregressive, integrated, and moving average. When the second component 
provides no significant explanatory power in the model, it is dropped. We found the integration 
term to be unimportant in this analysis, so it was dropped. The resulting model is known as 
ARMA, and can be characterized as 

p q 

X t = ∑ a j X t − j +∑ bk et −k 
j =1 k =0 

The equation states that a realization of the time-series X at time t depends on a linear 
combination of past observations of X plus a moving average of series e, which is a white noise 
process characterized by zero mean and variance sigma. The time series X is known as an 
ARMA(p,q) process, where p is the order of the autoregressive process of X on itself, and q is the 
order of the moving-average error term. 

There are well-known methods for applying ARMA models in practice. Interested readers can 
consult [7]for details. The first step of ARMA model development is to determine the order of the 
AR and MA processes, p and q, respectively. This is known as the model identification phase, and 
it involves the analysis of the autocorrelogram and partial autocorrelogram. Model identification 
is not an exact science, so it may be difficult to eliminate all the alternative model specifications. 

Once tentative values of p and q have been identified, the model coefficients aj and bk can be 
estimated. Although the model is linear in Xt-j and et-j, nonlinear estimation methods are required 
because of the autoregressive nature of X. The use of a linear estimation technique would result in 
a biased estimate of the coefficients. 

After estimation, the model can be checked with several diagnostics. It is not uncommon for a 
promising model identification to lead to a poorly performing model, so the diagnostic phase is 
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important because it weeds out models that do not work well. We found many such models 
during this project. We chose to present results for similar models whenever the model-
forecasting performance improved upon the persistence model. 

METRICS 

A well-known method of forecasting wind is the simplistic persistence method. This approach 
uses the past hour wind speed (or wind power) as the forecast for the next hour. As a forecasting 
technology, this method is not impressive, but it is nearly costless, and performs surprisingly 
well. Therefore, any forecast method first should be measured by the extent it can improve on 
persistence forecasts. That is the approach that we apply in this paper. The persistence forecast 
can offer a range of forecasting accuracy, depending on the wind regime and the number of 
periods to be forecast. In this project, we calculated the root mean square error (RMSE) of each 
forecast over the relevant time period to compare our methods with the persistence model. A 
lower RMSE implies that the forecast is more accurate, whereas a high RMSE value implies less 
accuracy. 

We are interested in how well ARMA models can forecast more than 1 hour in advance. We 
applied our forecasting techniques up to 6 hours ahead, which is approximately the limitation of 
purely statistical forecasting methods. We also developed ARMA models to forecast in 10-minute 
intervals. This may not be useful in some power markets, but it does illustrate that there is 
potential for forecast periods of less than 1 hour. In all cases, we measured the model forecast 
performance by comparing RMSE for the relevant data. 

HOURLY POWER FORECASTS 

We evaluated the model performance on different data than were used to train (fit the parameters) 
the model in each of the forecasting cases we looked at. A number of different training periods 
were applied so that we could see how this would affect the forecasting performance. 

We used actual wind power data from Lake Benton II (LB), Minnesota, as our primary source in 
this project. We also compared some of the LB forecasts with forecasts at Storm Lake, Iowa. 
Data from both of these sites is collected at the National Renewable Energy Laboratory and are 
described more fully in [3]. Figure 1 depicts the general location of these sites. 

A number of decisions must be made on how to develop statistical hourly power forecasts in 
order to analyze their accuracy. One of the most important decisions is the selection of the 
training period for the forecasting algorithm. In some of our initial screening work using the LB 
data, we calculated separate time-series for 10 months, training the model for the first 2 weeks 
and calculated forecasts for the remainder of the month. The statistical evidence showed that 
there was a significant difference in the ARMA model specifications that were calculated in each 
of the training periods. This finding is not surprising because it provides evidence of statistically 
significant variations in wind generation patterns at different times of the year, and these 
differences are important in developing a forecasting model. 

The first set of cases used LB wind power data from January-February 2001. The data from 
January were used to train the model, and hourly forecasts were developed for the month of 
February. Each forecast was for a 6-hour period ahead. The model results were compared with 
the persistence model, which was also applied to the same time periods. In many cases, the 
ARMA forecasting results were similar for different model specifications. We report results for 
forecast models that did improve over persistence. 
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Figure 2 illustrates the 
first forecasting case. The 
graph shows the ratio of 
the persistence RMSE to 
the ARMA RMSE. 
Higher ratios indicate 
better ARMA 
performance, and ratios 
less than 1 would indicate 
that persistence does a 
better job of forecasting 
than the ARMA model. 
The best model 
specification is clearly 
the ARMA(1,24), which 
improves on persistence 
by approximately 7% in 
the first hour, increasing 
to approximately 18% in 
the sixth hour. 

Figures 3 and 4 illustrate 
the forecast degradation 
even of the best 
ARMA(1,24) model. As 
indicated in Figure 3, a 1-
hour forecast is quite 
good, but the forecast 

FIGURE 1. WIND FARM LOCATIONS. 	 performance is 
significantly worse for 2 
hours ahead. 

A similar set of forecasting models were applied to the same time period at the Storm Lake wind 
plant. The same model specification, the ARMA(1,24), did the best overall job. However, it is 
worth noting that the ARMA(1,2) model was best in the 1-hour forecast, whereas the 
ARMA(1,24) model was better from 2 hours out to 6 hours. This suggests the possibility of using 
an ensemble of ARMA models, depending on the forecast performance of different model 
specifications for different forecast horizons. The Storm Lake results appear in Figure 5. 

The ARMA forecasts at both wind sites eroded significantly as the number of forecast periods 
increased, although the Storm Lake results were slightly better than the LB results. As measured 
by the RMSE, the forecast error for LB nearly tripled from the one-hour forecast to the 6-hour 
forecast, and the Storm Lake results were similar. A graph that shows the RMSE in kW as a 
function of the length of the forecast period appears in Figure 6. 

We also investigated additional periods during 2001; and changed the lengths of the training and 
testing intervals. Figure 7 shows an example of LB for the month of April 2001. For this case, a 
3-week training period was used, and the remaining hours of the month were used to test the 
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forecast. For this period, it is apparent that the suite of tested models did improve on persistence, 
but not to the same degree as the January-February cases. 
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FIGURE 2. LAKE BENTON II kW FORECASTS: JANUARY/FEBRUARY 2001. 
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FIGURE 7. LAKE BENTON II kW FORECASTS: APRIL 2001. 
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FIGURE 8. LAKE BENTON II WIND SPEED FORECASTS: MARCH/APRIL 2001. 
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Similar differences in model-forecasting ability at different times were found when forecasting 
wind speed directly. For LB we used March 2001 as a training period and tested the forecast for 
the following month. During the ARMA model identification phase the order of the ARMA 
process was somewhat ambiguous. Approximately 175 different ARMA specifications were 
tested, and none of them offered a particularly impressive forecast. These results appear in Figure 
8. 

April 2001 was used for the training period, and May was used to test the forecasts for the next 
case. The forecasting performance in the first couple of hours improved on persistence by about 
3% (or less) based on the RMSE, increasing to about 11% for the 6-hour forecast. Results from 
this suite of forecast models can be seen in Figure 9. These results are improved when compared 
to the March/April 2001 results. 

DYNAMIC TRAINING PERIODS 

Because of the apparent forecast model sensitivity to time of year, we also applied a dynamic 
training period to some of the LB cases. A more complete study than ours might look at a wide 
range of dynamic training periods, ranging from perhaps 1 week to several weeks. For the first 
dynamic training period, we used 744 hours (January 2001) to train the model, and applied the 
forecast to February. The approach uses the previous 744 hours to fit the model parameters, after 
first identifying the order of the ARMA process. A 6-hour forecast is generated. Then the training 
period shifts forward by 1 hour and another 6-hour forecast is generated. The process continues 
for the full month of February. Figure 10 illustrates the results of this process. For the 1-hour 
forecast, the range of improvement over persistence goes from 7% for the 1-hour forecast, up to 
15% for the 6-hour forecast. Note that the same ARMA model does not consistently perform 
better than the others in this suite. 

We chose the March-April time period for LB and applied different dynamic training periods to 
investigate this issue in more detail. This period was chosen because it appears to be the most 
difficult to predict, and we would like to see how the dynamic training period selection might 
help improve the forecasts. We show three cases, corresponding to dynamic training periods of 2 
weeks, 3 weeks, and the full month of March. Aside from the statistical performance of the 
models, different training period lengths have different tradeoffs between the information 
provided to the model and the constraints that are imposed by the model parameters. For 
example, a single ARMA model that is fit over a period such as 1 year will potentially have the 
ability to use a great deal of information that is embedded in the wind signal. Because different 
physical mechanisms can affect the level of wind resource at different times of the year, the 
variability of the wind can also have different statistical properties during these periods. This 
implies that either a very large number of model parameters may be needed to fully describe the 
process, or the parameters themselves could be a function of time. Partitioning the year into a 
number of distinct time periods allows the model parameters to be re-fit to account for different 
climatological properties during different times of the year. Choosing too short a period for model 
training could leave out some important information that would help the model’s forecasting 
accuracy. The ideal training period would pick up the important drivers and patterns for different 
times of the year. Parameters based on one set of climatic drivers should not be imposed on other 
time periods if it is known that another set of climatic drivers affects the wind resource. When 
model training and application spans a distinct seasonal boundary for example, we expect the 
forecasting performance to suffer. 
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Figure 11 shows the results of a dynamic 2-week training period, beginning in March 2001 and 
extending through the month of April. The ARMA(2,1) model does the best job of forecasting, 
but it only offers a 2%-5% improvement over persistence. Figure 12 shows a similar suite of 
ARMA models and is based on a 3-week dynamic training period. The forecast results are 
generally worse than the 2-week period. Figure 13 shows a 744-hour dynamic training period. 
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The results are moderately better than for the 3-week period, but the improvement over 
persistence is not significant. 

The results from using the dynamic training periods are complex and not open to easy 
interpretation. Further investigation into this issue is certainly warranted. 

10-MINUTE FORECASTS 

Finally, we did some testing of a 10-minute-ahead forecasting model. The usefulness of this type 
of wind forecast model would vary depending on the market structure of the electric power 
industry. For example, in markets such as California that perform re-dispatching on a 10-minute 
interval, a 10-minute wind power forecast might be useful to determine whether to accept 
increment or decrement bids from generators. If the 10-minute wind forecast indicates less wind 
energy than previously scheduled, the power system operator might want to increase generation 
from other units to make up the shortfall; and would thus accept a previously submitted bid to 
increase conventional generator output. We would like to determine whether it is feasible to 
predict 10-minute wind power output with an ARMA model. We applied a suite of ARMA 
models to Lake Benton II data from April. We used a 3-week training period and applied the 
model to a 1-week period, generating 12 successive 10-minutes forecasts. Performance of several 
of these models was reasonably good. Figure 14 shows an ARMA(0,36) model applied to the 10-
minute forecasting problem. Although several other models provided an advantage over the 
persistence model, their performance deteriorated rapidly after the first 10-minute period. The 
ARMA(0,36) model achieved a 16% RMSE improvement over persistence for one period ahead, 
falling to about 8% three periods ahead, and about 7.5% four periods ahead. At eight periods 
ahead, the ARMA(0.36) model deteriorates to the same performance level as the persistence 
model. Figure 15 shows a series of concatenated one-period (10-minute) forecasts from this 
model. 
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CONCLUSIONS 

There is a clear difference in the ability of ARMA forecast models applied to different time 
periods. The Lake Benton II wind farm was much easier to predict in January-February 2001, 
than it was in March-April 2001. Some of the models developed in this paper offer a significant 
improvement over the persistence model. Some ARMA models have difficulty reducing the 
forecast RMSE significantly as compared to persistence. In some cases, the model that does the 
best job forecasting 1-2 hours out is eclipsed by another model for longer forecast horizons. This 
raises the possibility of simple ensemble forecasts that can offer better forecasting over the 
horizon than a single model specification. 

In several cases, we found many alternative ARMA models that did a good job forecasting over 
the testing time frame. We also found it difficult to determine the proper identification for several 
models, and that led to the evaluation of alternative specifications. It is apparent that a one-size-
fits-all approach will not work based on the analysis of the role of the training period because of 
model performance sensitivity to this feature. The dynamic-training model applied to LB for 
January-February did not quite achieve the forecast accuracy as the fixed training period version 
of the model, suggesting that important information may have been excluded as the training 
window advanced forward. 

Finally, we found that it is possible to forecast wind power 10 minutes ahead, and in 10-minute 
periods. The ARMA(0.36) model for LB in April 2001 beat persistence for up to eight 10-minute 
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periods ahead. Although 10-minute forecasts may not be useful to all wind farm or grid operators, 
it might be useful in some markets. 
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